Aprotinin preserves cellular junctions and reduces myocardial edema after regional ischemia and cardioplegic arrest.
نویسندگان
چکیده
BACKGROUND Cardiac surgery with cardiopulmonary bypass (CPB) and cardioplegic arrest has been associated with myocardial edema attributable to vascular permeability, which is regulated in part by thrombin-induced alterations in cellular junctions. Aprotinin has been demonstrated to prevent activation of the thrombin protease-activated receptor, and we hypothesized that aprotinin preserves myocardial cellular junctions and prevents myocardial edema in a porcine model of regional ischemia and cardioplegic arrest. METHODS AND RESULTS Fourteen pigs were subjected to 30 minutes of regional ischemia, followed by 60 minutes of CPB, with 45 minutes of crystalloid cardioplegia, then 90 minutes of post-CPB reperfusion. The treatment group (n=7) was administered aprotinin (40,000 kallikrein inhibitor units [KIU]/kg loading dose, 40,000 KIU/kg pump prime, and 10,000 KIU/kg per hour continuous infusion). Control animals (n=7) received normal saline. Myocardial vascular endothelial (VE)-cadherin, beta-catenin and gamma-catenin, and associated mitogen-activated protein kinase (MAPK) pathways were assessed by immunoblot and immunoprecipitation. Histologic analysis of the cellular junctions was done by immunofluorescence. Myocardial tissue water content was measured. VE-cadherin, beta-catenin, and gamma-catenin levels were significantly greater in the aprotinin group (all P<0.05). Immunfluorescence confirmed that aprotinin prevented loss of coronary endothelial adherens junction continuity. Aprotinin reduced tyrosine phosphorylation in myocardial tissue sections. Phospho-p38 activity was approximately 30% lower in the aprotinin group (P=0.007). The aprotinin group demonstrated decreased myocardial tissue water content (81.2+/-0.5% versus 83.5+/-0.3%; P=0.01) and reduced intravenous fluid requirements (2.9+/-0.2 L versus 4.0+/-0.4 L; P=0.03). CONCLUSIONS Aprotinin preserves adherens junctions after regional ischemia and cardioplegic arrest through a mechanism potentially involving the p38 MAPK pathway, resulting in preservation of the VE barrier and reduced myocardial tissue edema.
منابع مشابه
Reduction of myocardial reperfusion injury by aprotinin after regional ischemia and cardioplegic arrest.
BACKGROUND Surgical coronary revascularization with cardiopulmonary bypass and cardioplegia has been associated with reperfusion injury. The serine protease inhibitor aprotinin has been suggested to reduce reperfusion injury, yet a clinically relevant study examining regional ischemia under conditions of cardiopulmonary bypass and cardioplegia has not been performed. METHODS Pigs were subject...
متن کاملThe antioxidant N-acetylcysteine preserves myocardial function and diminishes oxidative stress after cardioplegic arrest.
OBJECTIVE Oxidative stress contributes to myocardial ischemia-reperfusion injury. We hypothesized that administration of the antioxidant N-acetylcysteine would have beneficial effects on myocardial function after cardiopulmonary bypass and cardioplegic arrest. METHODS Anesthetized dogs (n = 18) were instrumented with myocardial ultrasonic crystals and a left ventricular micromanometer. Systol...
متن کاملCardioprotective effects of tetrahydrobiopterin in cold heart preservation after cardiac arrest.
BACKGROUND It has recently been shown that tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase (NOS), reduces ischemia-reperfusion myocardial injury. The aim of this study was to determine if supplementation with BH4 after cardiac arrest followed by cold heart preservation would exert a cardioprotective effect against ischemia-reperfusion injury. MATERIALS AND METHODS Is...
متن کاملCustodiol-N, the novel cardioplegic solution reduces ischemia/reperfusion injury after cardiopulmonary bypass
BACKGROUNDS On the basis of Custodiol preservation and cardioplegic solution a novel cardioplegic solution was developed to improve the postischemic cardiac and endothelial function. In this study, we investigated whether its reduced cytotoxicity and its ability to reduce reactive oxygen species generation during hypoxic condition have beneficial effects in a clinically relevant canine model of...
متن کاملWhole blood cardioplegia (minicardioplegia) reduces myocardial edema after ischemic injury and cardiopulmonary bypass.
While blood:crystalloid cardioplegia is the clinical standard for patients undergoing cardiopulmonary bypass (CPB), it has been postulated that whole blood minicardioplegia may benefit the severely injured heart by reducing cardioplegic volume, thereby reducing myocardial edema. To test this hypothesis, we compared the cardioprotection of a popular 4:1 blood:crystalloid cardioplegia to whole bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 112 9 Suppl شماره
صفحات -
تاریخ انتشار 2005